Search results for "Larmor precession"
showing 10 items of 26 documents
Systematic and statistical uncertainties of the hilbert-transform based high-precision FID frequency extraction method.
2021
Abstract Pulsed nuclear magnetic resonance (NMR) is widely used in high-precision magnetic field measurements. The absolute value of the magnetic field is determined from the precession frequency of nuclear magnetic moments. The Hilbert transform is one of the methods that have been used to extract the phase function from the observed free induction decay (FID) signal and then its frequency. In this paper, a detailed implementation of a Hilbert-transform based FID frequency extraction method is described, and it is briefly compared with other commonly used frequency extraction methods. How artifacts and noise level in the FID signal affect the extracted phase function are derived analytical…
A Precessing Ferromagnetic Needle Magnetometer
2016
A ferromagnetic needle is predicted to precess about the magnetic field axis at a Larmor frequency $\Omega$ under conditions where its intrinsic spin dominates over its rotational angular momentum, $N\hbar \gg I\Omega$ ($I$ is the moment of inertia of the needle about the precession axis and $N$ is the number of polarized spins in the needle). In this regime the needle behaves as a gyroscope with spin $N\hbar$ maintained along the easy axis of the needle by the crystalline and shape anisotropy. A precessing ferromagnetic needle is a correlated system of $N$ spins which can be used to measure magnetic fields for long times. In principle, by taking advantage of rapid averaging of quantum unce…
Ferromagnetic gyroscopes for tests of fundamental physics
2020
A ferromagnetic gyroscope (FG) is a ferromagnet whose angular momentum is dominated by electron spin polarization and that will precess under the action of an external torque, such as that due to a magnetic field. Here we model and analyze FG dynamics and sensitivity, focusing on practical schemes for experimental realization. In the case of a freely floating FG, we model the transition from dynamics dominated by libration in relatively high externally applied magnetic fields, to those dominated by precession at relatively low applied fields. Measurement of the libration frequency enables in situ measurement of the magnetic field and a technique to reduce the field below the threshold for w…
Experimental benchmarking of quantum control in zero-field nuclear magnetic resonance
2017
Zero-field nuclear magnetic resonance (NMR) provides complementary analysis modalities to those of high-field NMR and allows for ultra-high-resolution spectroscopy and measurement of untruncated spin-spin interactions. Unlike for the high-field case, however, universal quantum control -- the ability to perform arbitrary unitary operations -- has not been experimentally demonstrated in zero-field NMR. This is because the Larmor frequency for all spins is identically zero at zero field, making it challenging to individually address different spin species. We realize a composite-pulse technique for arbitrary independent rotations of $^1$H and $^{13}$C spins in a two-spin system. Quantum-inform…
Polarization-driven spin precession of mesospheric sodium atoms
2018
We report experimental results on the first on-sky observation of atomic spin precession of mesospheric sodium driven by polarization modulation of a continuous-wave laser. The magnetic resonance was remotely detected from the ground by observing the enhancement of induced fluorescence when the driving frequency approached the precession frequency of sodium in the mesosphere, between 85 km and 100 km altitude. The experiment was performed at La Palma, and the uncertainty in the measured Larmor frequency ($\approx$260 kHz) corresponded to an error in the geomagnetic field of 0.4 mG. The results are consistent with geomagnetic field models and with the theory of light-atom interaction in the …
Motion of an electric charge in a terrestrial laboratory.
1995
The equation of motion for a charge in an electromagnetic field is written in the Fermi coordinates of an observer moving with a constant acceleration g=9.8 m/${\mathrm{s}}^{2}$ (${10}^{\mathrm{\ensuremath{-}}18}$ ${\mathrm{cm}}^{\mathrm{\ensuremath{-}}1}$ in units such that c=1). This is involved in the equation of motion not only as a Newtonian term g\ensuremath{\rightarrow}, but also as a relativistic correction of the form ``-2(g\ensuremath{\rightarrow}\ensuremath{\cdot}v\ensuremath{\rightarrow})v\ensuremath{\rightarrow}.'' We have studied the effect of this term under the conditions of an accelerator of particles. To this end, we have considered a constant and uniform magnetic field, a…
Optimal control of the inversion of two spins in Nuclear Magnetic Resonance
2012
International audience; We investigate the optimal control of the inversion of two spin 1/2 particles in Nuclear Magnetic Resonance. The two spins, which differ by their resonance offset, are controlled by the same radio frequency magnetic field. Using the Pontryagin Maximum Principle, we compute the optimal control sequence which allows to reach the target state in a given time, while minimizing the energy of the magnetic field. A comparison with the time-optimal solution for bounded control amplitude realizing the same control in the same time is made. An experimental illustration is done using techniques of Nuclear Magnetic Resonance.
Measurement of the Permanent Electric Dipole Moment of the $^{129}$Xe Atom
2019
We report on a measurement of the $CP$-violating permanent electric dipole moment (EDM) of the neutral $^{129}\mathrm{Xe}$ atom. Our experimental approach is based on the detection of the free precession of co-located nuclear spin-polarized $^{3}\mathrm{He}$ and $^{129}\mathrm{Xe}$ samples. The EDM measurement sensitivity benefits strongly from long spin coherence times of several hours achieved in diluted gases and homogeneous weak magnetic fields of about 400 nT. A finite EDM is indicated by a change in the precession frequency, as an electric field is periodically reversed with respect to the magnetic guiding field. Our result $(\ensuremath{-}4.7\ifmmode\pm\else\textpm\fi{}6.4)\ifmmode\t…
Probing Lorentz invariance and other fundamental symmetries in3He/129Xe clock-comparison experiments
2011
We discuss the design and performance of a very sensitive low-field magnetometer based on the detection of free spin precession of gaseous, nuclear polarized 3He or 129Xe samples with a SQUID as magnetic flux detector. Characteristic spin precession times T*2 of up to 60 h were measured in low magnetic fields (about 1μT) and in the regime of motional narrowing. With the detection of the free precession of co-located 3He/129Xe nuclear spins (clock comparison), the device can be used as ultra-sensitive probe for non-magnetic spin interactions, since the magnetic dipole interaction (Zeeman-term) drops out in the weighted frequency difference, i.e., Δω = ωHe− γHe/γXe·ωXe. We report on searches …
Spin dynamics in the single-ion magnet [Er(W5O18)2]9−
2018
In this work we present a detailed NMR and ${\ensuremath{\mu}}^{+}\mathrm{SR}$ investigation of the spin dynamics in the new hydrated sodium salt containing the single-ion magnet ${[\mathrm{Er}{({\mathrm{W}}_{5}{\mathrm{O}}_{18})}_{2}]}^{9\ensuremath{-}}$. The $^{1}\mathrm{H}\phantom{\rule{0.16em}{0ex}}\mathrm{NMR}$ absorption spectra at various applied magnetic fields present a line broadening on decreasing temperature which indicates a progressive spin freezing of the single-molecule magnetic moments. The onset of quasistatic local magnetic fields, due to spin freezing, is observed also in the muon relaxation curves at low temperature. Both techniques yield a local field distribution of t…